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The characteristic function defining the eigenvalues of the Orr-Sommerfeld 
equation is discussed and it is shown how the expected analytic properties of this 
function can be exploited to generate series expansions defining eigenvalues 
within the circle of convergence. This technique is applied to the modes arising 
in the Blasius flat-plate boundary layer (treated as a parallel flow), for which 
the complex wavenumber a can be expanded as a convergent power series in 
the complex frequency parameter /3 in various regions of the p plane. Such power 
series are effectively equivalent to Fourier expansions and the properties of the 
latter are used to find the coefficients. 

A square-root singularity in the relationship between a and p is found and i t  
is shown how a can, nevertheless, be expressed in terms of as the sum of one 
regular series and the square root of a second regular series. The loci of the real 
and imaginary parts of a have been computed from these series and show the 
behaviour in the neighbourhood of the branch point. 

The series description provides a particularly simple and rapid method of 
evaluating eigenvalues and their derivatives within any given region. 

1. Introduction 
We consider small perturbations to a given steady parallel mean flow and 

discuss some general relationships between the eigenvalues which define modes 
corresponding to such perturbations. It is shown how this information can be used 
to derive the coefficients of series expansions defining these eigenvalue relations. 
The series provide a powerful way of evaluating eigenvalues and their deriva- 
tives within the circle of convergence and are particularly convenient when 
calculation of large numbers of eigenvalues is required. In  order to simplify this 
discussion the following analysis will only be concerned with two-dimensional 
modes, but the arguments can also be applied to more general problems involving 
oblique waves. 

Small two-dimensional disturbances can conveniently be defined in terms of 
a perturbation stream function, the properties of which are governed by the 
linearized and transformed equations of motion. In  particular, for mean flows 
confined within parallel strips of finite width the Fourier transform of the 
linearized Navier-Stokes equation, evaluated over the frequency (p) and 
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wavenumber (a) plane, provides an ordinary differential equation (the Orr- 
Sommerfeld equation) for the transform of the stream function # in y. The 
co-ordinate system for the flow is chosen such that the x axis is parallel to the 
direction of the mean flow, in which the velocity is assumed to be a function of y 
only. The stream function is $' = #(y, a,P)expi(ax-pt), and a and /3 arise as 
parameters in the differentialequation. The solutionof this equation, coupledwith 
the appropriate boundary conditions on #, defines a characteristic equation con- 
necting a and p such that when one quantity is defined the other one appears as 
an eigenvalue. This Characteristic equation is denoted by P(a, /3) = 0. In  general 
a spectrum of eigenvalues is to be expected (Jordinson 1971; Mack 1976), but 
in most of the flows which have been studied it appears that only the lowest 
mode is unstable (in some sense) and therefore physically important. Such a 
mode is defined through a particular zero of the characteristic equation by the 
values of the parameters a and p. The physical nature of this mode depends on 
the phases of both a and /3; of special interest are those cases with either a or /3 
purely real. Temporal disturbances, which occur when a is real, have complex 
values of /3 and grow exponentially in time like exp(/3*t), Such a mode is un- 
stable when Pi > 0. A spatial mode is described by a real frequency parameter 
and a complex wavenumber, the imaginary part of which defines the spatial 
development exp ( -ai%), indicating a growing unstable wave system when 
a, < 0 for the usual downstream-propagating disturbance. Apart from these 
particular modes, which correspond to physically realistic flows, there exists a 
whole class of disturbances defined by complex values of both a and /3. Although 
such modes may not occur as isolated waves in any physical situation, they are 
nevertheless useful in Fourier descriptions of more general disturbances which 
can be considered as composed of a sum or integral of normal modes. Fourier 
transforms which are valid in the complex plane offer a convenient way of 
analysing real disturbances through the characteristic equation. For any given 
mean flow it is in principle possible to obtain this characteristic relationship in 
numerical terms and hence deduce the flow disturbance. In  practice the zero of 
the characteristic equation associated with the lowest mode is the only one 
considered, but since the disturbance to the flow is dominated by this mode all 
important features are represented. Consequently the following discussion 
concentrates attention solely on the lowest mode. 

Numerical calculations of eigenvalues in complex a, ,8 space have been made 
for various flows and the results are often displayed in the form of a distorted 
grid of loci of constant a, and a( plotted over the complex plane (or vice versa). 
These mappings (see Betchov & Criminale 1966; Gaster & Davey 1968; Mattingly 
& Criminale 1972) show the relationship between the two parameters to be 
analytic except at  isolated points. Since the Orr-Sommerfeld equation, defining 
the eigenfunction, is regular within the physical flow field in question it follows 
that all solutions must also be regular, and it can in fact be shown that the 
characteristic equation P(a, /3) = 0 must be an entire function of both a and p. 
This results in an analytic relationship between a and (Gaster 1968) except at  
isolated branch points where the higher modes are linked. This property has 
been used to provide a link between spatially and temporally growing waves, 
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thus enabling the experimental measurements which relate to spatially develop- 
ing waves to be compared with the temporal disturbances, which are more 
conveniently considered in theoretical discussions (Gaster 1962). It seems, 
however, that this analytical property has not been exploited fully in more 
general discussions of the characteristic equation. Here we show how eigen- 
values evaluated around a closed confour can be used to develop a series defining 
eigenvalues within the contour. The procedure is particularly simple when these 
regions contain analytic functions, but the branch-point type of singularity, 
which must arise in some parts of the plane, can be similarly treated without 
undue complication. 

2. Analysis 
I n  the following analysis /3 is treated &s the eigenvalue arising from the 

solution of the characteristic equation P(a, P )  = 0 when a is prescribed, so that 
,8 appears as a function of a. Since J'(a,P) is in general an entire function of 
both a and P, it  can be expanded about any point (ao, Po) as a Taylor series for 
which the radius of convergence of each of the variables a and ,13 is infinite; the 
series takes the form 

Eigenvalues arise from the zeros of P and thus equating the above series to zero 
provides an algebraic relation between a - a. and 18 -Po. This equation may be 
solved by expressing P -Po as a power series in a -ao which has a finite radius of 
convergence determined by the distance of a from the nearest singularity. In 
any region not enclosing branch points we can expand about (ao,P0), where this 
point is chosen such that . F ( O ~ ~ , ~ ~ )  is zero, and obtain 

P-Po = -(a-a,) qj +... +O(cc-ao)2, aFlaJ' 
and so find a unique /3 for every a. It is also possible to obtain the inverse form 
where a is expressed in terms of /3. We note that, in either case, singularities 
must arise since aF/aa or aF/ap, being themselves entire functions, have at 
least one zero in the a or /3 plane respectively (see Gaster 1968). In  regions where 
the Taylor expansion is valid j9 is an analytic function of a and for such func- 
tions it is only necessary to know the value of ,8 round a closed contour in the 
a plane to define it everywhere inside that region. It is convenient to take the 
contour to be a circle of radius R in the a plane centred at  a, so that a = a. + R eie. 
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Since p is an analytic function of a within this circle it must satisfy Laplace’s 
equation and have a general solution of the form 

where a -ao = rei0, r < R, and the C, are complex coefficients. Knowing the 
values of ,8 on the boundary r = R these coefficients can be calculated using the 
usual Fourier inversion formulae. We are concerned here with the situation 
where p is specified (i.e. calculated) at a finite number of discrete points on the 
circle r = R. We can express p in the form P(K) = ,8(0)S(~), where p(8) is the 
function for the continuous behaviour on the circle and S(K)  is a Dirac comb 
containing j delta functions equally spaced around the circumference at  angular 
intervals of 277~/j. The series for the discrete data is given by the convolution of 
the Fourier series of the continuous function P(0) and the Dirac comb. This 
series thus equals that of the continuous function p(8) only if the coefficients of 
the latter are zero above the Nyquist folding point. If this condition is not 
satisfied the coefficients generated by the discrete data set will be aliased by 
elements above the cut-off. To obtain a useful series representing the function 
within the circular region it is necessary to use sufficient data points to ensure 
that the resulting Fourier coefficients become insignificant by the cut-off point. 
In  any specific example we note that the number of terms in the finite Fourier 
series is equal to half the number of data points around the contour. 

3. Practical example 
The method outlined in the previous section is applied to the modes which 

correspond to perturbations of the laminar boundary layer on a flat plate. The 
mean flow, which is assumed to be parallel, is given by the x component of the 
Blasius solution, so that the flow field covers the half-plane y >, 0, the flat plate 
lying in the plane y = 0. Some of the statements made previously about the 
behaviour of eigenvalues arising in mean flows confined within parallel strips 
of finite width may not apply to flows of boundary-layer type. When the flow 
lies within such a strip the eigenvalues must be discrete since the characteristic 
function defining them is entire, but this is no longer necessarily so in the case 
of the boundary layer, where the flow covers a half-plane. In  fact it seems likely 
that the spectrum contains some continuum in addition to any discrete modes 
which may occur. 

In  the calculations discussed here we use purely numerical methods to find 
a set of eigenvalues (round a circular contour, say) from which others may be 
comput,ed using a power series. The Om-Sommerfeld equation is discretized in 
one way or another and appropriate boundary conditions applied at the flat 
plate and at  some finite point in the free stream. The eigenvalues, found either 
by a matrix iteration technique or by a shooting technique involving direct 
numerical integration, are basically solutions of a set of linear algebraic equa- 
tions. The resulting eigenvalues must therefore be discrete although in the 
present example there may well be a continuous spectrum associated with the 
differential equation as well. The present discussion, however, is concerned 
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FICCTRE 1. Loci of constant a, and ai on the /3 plane for two circular regions in the 
a plane of radius 0-1 and centres (0.26, 0) and (0.26, 0.1). 

with the lowest modes and these are in any case known to be discrete for the 
boundary-layer problem. The following treatment must nevertheless be applic- 
able to all the discrete eigenvalues generated numerically since these exhibit the 
analytic behaviour expected for the discrete modes of a typical strip problem. 

In  this example p eigenvalues were calculated from the Orr-Sommerfeld 
equation for 60 values of a equally spaced around the circle la-a,l = 0.1, 
where a, = (0-26 ,O) .  The Reynoldsnumber, basedon the displacement thickness, 
was taken to be 1000. The eigenvalues were found using a matrix method with 
80 intervals across the boundary layer (Jordinson 1970) and are plotted on the 
/3 plane in figure 1. They lie unequally spaced on an almost circular closed 
contour. The coefficients of the Fourier series defined by these points were 
computed and the first 18 are shown in table 1. The coefficients decrease quite 
steadily with increasing n and reach a lower limit roughly equal to the rounding 



126 M .  Oaster and R. Jordilzsora 

n An BrI 
0 9.17, - 2  , 3.11, - 2  
1 4.23, - 2 5.90, - 4  
2 9.83, - 4  -3.87, - 3  
3 -4.74, -4  -5.87, - 4  
4 -5.99, - 5  5.65, -5  
5 -7.68, - 6  -44-45, - 5  
6 -8.91, - 6  9.97, - 6  
7 - 1.30, - 6  -4.79, -6  
8 -3.38, - 7  1.94, - 6  
9 - 4.95, - 7 -6.65, -7  

10 1.73, - 7  3.08, - 7  
11 - 1.50, - 7 - 6.98, - 8 
12 6.74, - 8  2.63, - 8  
13 - 3.54, - 8 3.91, - 9  
14 1.51, -8  -4.82, - 9  
15 - 6-32, - 9 4.87, - 9  
16 1.95, - 9  -3.23, - 9  
17 - 7.12, - 10 1.47, - 9  
18 -2.11, -10 - 1.16, - 9  

TABLE 1. Fourier coefficients based on 60 points around the circle in the CL plane centred 
at (0.26, 0) with a radius of 0.1. The coefficients A ,  and B, are the real and imaginary 
parts of RW,, where R is 0.1. 

error of the computer used in the evaluation of the p's around the circle. A 
better impression of the behaviour of the coefficients is provided by the logarith- 
mic plot of the modulus A% + Bi  vs. shown on figure 2. Since the eigenvalues 
themselves are only accurate to 5 or 6 decimal places, nothing is gained by using 
more than about 12 terms of the series to represent ,8 within the prescribed region. 
This implies that p is a smooth enough function in this particular example to be 
adequately represented by 24 points on the circumference of the circle in the 
a plane. Values of /? for different a's have been calculated from the full series 
and from the series truncated at  the twelfth term, and these are compared in 
table 2 with the eigenvalues generated directly from the Orr-Sommerfeld equa- 
tion by the matrix routine. The agreement achieved is very satisfactory within the 
contour region both for the full and the truncated series. Significant differences do 
not arise, even for the latter series, until the extremities of the region are reached. 

The series was also used to calculate p, and pi for an array of points covering 
the square circumscribing the circle in the a plane. This information is displayed 
on figure i in the form of a grid of lines of constant a, and ai on the p plane. 
Similar calculations were made for an adjoining region and the grid lines have 
been continued into this area of the p plane. 

4. Treatment of a singular point 
Attempts to map a, and a( loci over certain regions of the p plane by the 

usual process of plotting directly evaluated eigenvalues produced a confused 
picture. This arose because higher modes with similar values of ,4 existed in 
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FIUURE 2. Magnitudes of the Fourier coefficients generated from the circle of centre (0.26,O) 
and radius 0.1 in the a plane. A,  and B, are the real and imaginary parts of PC, of 
equation (3). 

P T  Pi 

(a) 0.09165793 0-00310804 
(b )  0,09165793 0*00310804 
(c) 0-09165793 0-00310804 
(a) 0.10745666 0.01 851 389 
(b) 0.10745669 0-01851391 
(c) 0-10745669 0.01851391 
(a)  0.12578484 0.03446345 
(b)  0.12578484 0.03446345 
(c) 0.12578482 0.03446343 
(a) 0-14330725 044819733 
(b)  0.14330714 0.04819702 
(c) 0.14330521 0.04819636 

U, = 0-26 
ai = 0 

a, = 0.2954 
a, = 0.0354 

a, = 0,3307 
a, = 0.0707 

a, = 0.36 
01, = 0.10 

TABLE 2. Values of P calculated from (a) direct solution of the Orr-Sommerfeld 
equation, (b )  full Fourier series and (c )  Fourier series with 12 terms. 
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-0.10 I 
P i  

FIGURE 3. Loci of points around the circumference of the circle of radius 0.08 centred at  
(0.1, -0-1) on the a plane. Points 1-29 refer to the first circuit. Points 30-59 refer to the 
second circuit. 

these regions. The pattern of behavour indicated the presence of a square-root 
branch-point singularity in the function P(a) similar to those found in other 
cases (Betchov & Criminale 1966; Gaster 1968). A procedure similar to that 
described in the previous section was adopted, although modified to account 
for the presence of the singularity. The resulting expansions were used to locate 
the singularity and obtain the complete solution in its neighbourhood. 

4.1. Analysis 
The values of p for 30 equally spaced steps round a circle in the a plane of radius 
R = 0.08 and centre a,(0-1, - 0.1) are plotted in figure 3. It was found that one 
circuit in the a plane did not map into a closed loop in the p plane and a second 
circuit was needed in the a plane to complete the loop in the /3 plane. /3 is clearly 
double valued inside this region and consequently a different series representa- 
tion is needed. We consider briefly this aspect of the problem. 

= P(a,); the expansion of 
a in terms of p in the neighbourhood of the singularity is of the form 

Suppose that the singularity is at  (al,pl), where 

a-a, = aa(P-,81)2+aa,(P-P1)3+ ..., 
which implies that the disturbance has infinite group velocity a t  al. It follows 
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that the inverse series for B in terms of a in the corresponding neighbowhood is 
of the form 

p - p ,  = b,(a-a,)+-tb,(a-a,) +b,(a-a,)#+ ... 
= (a - a,)$ x a regular series in powers of a - al 

+ another regular series in powers of a - a, + . . . , (4) 

where la - a,l < d, say, and d is the distance from a, to the next singularity. 
In  the current problem the basic circle is centred at a, and the location of a, 
is unknown. It is possible to write down an expansion similar to (4) of the form 

p - Po = (a - a,)+ x a regular series in powers of a - a, 
+ another regular series in powers of a - a, + . . . , (5) 

where rB, = ~(a,), subject to the conditions (i) that la-a,l > lao- all and (ii) 
that no other singularity lies within the circle la - a,] = R. So, as the first circuit 
of this circle is made, the values of ,8 will depend on the sign of the first term in 
(5); this sign changes when the second circuit is commenced and gives rise to a 
second branch of p. This result may be expressed more concisely in the form 

p = x+ Y+, 
where X is the regular component and Y+ corresponds to  the first series on the 
right-hand side of ( 5 ) .  

4.2. Numerical details 
Let us define the values of /3 on the first circuit of the a-plane circle as P(q), 
where q goes from 0 to 29, so that /3(q + 30) denotes values on the second circuit. 
It follows that $[/?(q) + /3(q + 30)] must be related to the regular component X 
and corresponding to this we define a sequence p1(q) by 

P l k )  = HP(4)  +P(q + W1Y 
where q goes from 0 to 29. Since p(q)  and P(q+ 60) are identical it  is clear that 
pl(q) has the same value as pl(q+30), and /3,(q) is therefore a single-valued 
function of a. The singular part, corresponding to Y*, is given by the differences 
in the values of ,8 on the two circuits, so we define a second sequence p2(q) by 

where q goes from 0 to 29 as before. This quantity changes sign on alternate 
circuits, so that 

The regular component X can be expressed directly as a Fourier series generated 
from the values of p1(q). The singular component Yt  becomes regular when 
squared, so that Y can be expressed as a Fourier series from values of [p2(q)l2.  
Thus we can write p in the form 

where a - a, = reio and the complex coefficients X ,  and Y, are found using the 
method already described from the values of P1(q) and /3,(q) round the circuit. 

F L M  72 9 
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FIGURE 4. Riemann surface formed by the display of p, on the u plane 
near the singular point. 
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FIGURE 5. Loci of constant u, and ai plotted on the /3 plane near the singularity. 

The two values of ,8 are then easily calculated from these series a t  any point 
inside the enclosed circular region in the a plane. 

In order to display the behaviour of the function ,8(01) values of ,8 were cal- 
culated for an array of points on the a plane. The real part ,8,, is shown as the 
ordinate in a perspective projection on the a plane. For each of 101 x 101 grid- 
point values of a there are two values of I,, and the two sheets have been com- 
bined in this display in an attempt to show the Riemann surfaces. This picture 
(figure 4) shows clearly the square-root singularity, in the neighbourhood of 
which the gradients of ,8, become steep and multi-valued. The position of this 
singidar point can easily be found from the series by an iterative scheme. The 
values are 

The behaviour of a near this singular point is shown in figure 5. 
The power of the series technique is well demonstrated by this exampIe, 

where the computations involved some 20000 eigenvalues. The time taken to 
evaluate these from the series was about the same as that required for the 
computation of, say, half-a-dozen eigenvalues by direct solution of the Orr- 
Somvnerfeld equation. 

The region around the singular point is shown in detail by the plot of lines of 
constant a, and a( on the /3 plane. This is just the type of picture previously 
shown by Betchov & Criminale for other types of flow. 

a, = 0.079878 - 0*059820i, PI = 0.020488 - 0.032855.3. 

9-2 
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Re SPda Im JPda 

1st circuit - 0.3581125168 - 0.19878723528 
2nd circuit + 0.3581125168 + 0.19878723528 

TABLE 3 

5. Analytical nature of the eigenvalues and line integrals 

niques can be demonstrated by evaluating 
The analytical nature of the eigenvalues obtained by purely numerical tech- 

S , P k  

where C is, say, the circle Ia-aoI = R defined in the previous section. If C 
encloses a singularity the line integral round one circuit will not be zero and a 
further circuit will be necessary to return the value to zero. Table 3 below gives 
some typical results for the circle with a. and R as defined earlier. 

The eigenvalues themselves are correct to only 5 or 6 decimal places so it is 
evident that the eigenvalues of the discretized differential equation have ana- 
lytic properties in their own right irrespective of whether or not they are close 
approximations to the eigenvalues of the original differential equation. This result 
is consistent with the earlier discussion on the nature of discrete eigenvalues. 

6. Discussion and concluding remarks 
The representation of ,8 in terms of a by a series enables rapid calculation of 

eigenvalues within a given region. This is particularly useful when large numbers 
of data points are needed to display the function either as a grid of constant ,!?, 
and ,!?p loci on the a plane or as a perspective projection. The character of the 
eigenvalue behaviour can readily be identified and any branch point found. 

The series description of the eigenvalue relation simplifies any calculations 
involving these parameters and their derivatives, which in turn can also be 
expressed directly as a series. A particular example where this method has been 
used to good effect arises in the calculation of disturbances composed of large 
numbers of modes. Wave packets, which can be defined in terms of integrals of 
isolated modes, can be evaluated from asymptotic expansions involving the 
functions ,!?(a), a,!?(a)/aa and a2p(a)/aa2 (Gaster & Davey 1968). A direct solution 
of this problem using the Orr-Sommerfeld equation to provide the quantities 
,!?(a) etc. proved to be tedious and very costly in terms of computing time. 
The present approach, where P(a) is obtained as a convergent series, provides 
a simpler and much faster way of evaluating the form of the disturbance in the 
physical plane. 

Contour integration of eigenvalues round a circle has demonstrated the 
remarkable analytic properties of the modes of the discretized differential 
equation. In  practice it appears that such modes follow a well-behaved pattern. 
They are isolated and arise from the zeros of a characteristic function which is 
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entire in a and /3. Each of the zeros represents one mode and it seems, therefore, 
that the higher modes which have been found by Jordinson (1971), Mack (1976) 
and others must be linked through the branch points of the function described 
earlier. In  the numerical example of $4.2 two close values of ,& were generated 
for every a; one value related to the usual unstable lowest mode of the system, 
whilst the other related to a damped higher mode. The spectrum of modes for 
the boundary layer has been investigated by Mack for a specific real wave- 
number of 0-308 and a Reynolds number of 1000 in our notation. The present 
calculations were extended along the real axis and i t  was found that the values 
of ,&, and Pi for CI = 0.308 were virtually identical to Mack’s second mode. There 
can be no doubt that the other higher modes are also coupled through further 
branch points and a more direct way of finding them might well be through some 
contour integration procedure of the type discussed in this paper. 
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